Name: \qquad
Row: \qquad

Math 113H, Section 12
 Exam 1

Instructor: David G. Wright
16-18 September 2010

Instructions:

1. Work on scratch paper will not be graded.
2. Should you have need for more space than is allotted to answer a question, use the back of the page the problem is on and indicate this fact.
3. Simplify your answers. Expressions such as $\ln (1), e^{0}, \sin (\pi / 2)$, etc. must be simplified for full credit.
4. Calculators are not allowed.

For Instructor use only.

$\#$	Possible	Earned	$\#$	Possible	Earned	
1.a	6		4	10		
1.b	6			$5 . \mathrm{a}$	8	
1.c	6			$5 . \mathrm{b}$	8	
1.d	6			$5 . \mathrm{c}$	8	
1.e	6			$5 . \mathrm{d}$	8	
2	10			5.3	8	
3	10		Total	100		

1. (30%) Consider the region between the curves $y=\sqrt{x-1}$ and $y=\frac{x-1}{2}$.

(a) Set up an integral for the area of the region bounded by the curves. DO NOT SIMPLIFY. DO NOT EVALUATE.

$$
\int_{1}^{5}\left(\sqrt{x-1}-\frac{x-1}{2}\right) d x
$$

(b) Use the Washer Method to set up an integral for the volume when the region is rotated about the x-axis. DO NOT SIMPLIFY. DO NOT EVALUATE.

$$
\pi \int_{1}^{5}\left((x-1)-\left(\frac{x-1}{2}\right)^{2}\right) d x
$$

(c) Use the Shell Method to set up an integral for the volume when the region is rotated about the y-axis. DO NOT SIMPLIFY. DO NOT EVALUATE.

$$
2 \pi \int_{1}^{5} x\left(\sqrt{x-1}-\frac{x-1}{2}\right) d x
$$

(d) Set up an integral for the volume when the region is rotated about the line $y=2$. DO NOT SIMPLIFY. DO NOT EVALUATE.

$$
\pi \int_{1}^{5}\left[\left(2-\frac{x-1}{2}\right)^{2}-(2-\sqrt{x-1})^{2}\right] d x
$$

(e) Set up an integral for the volume when the region is rotated about the line $x=-1$. DO NOT SIMPLIFY. DO NOT EVALUATE.

$$
2 \pi \int_{1}^{5}(x+1)\left(\sqrt{x-1}-\frac{x-1}{2}\right) d x
$$

2. (10%) Use the disk method or the shell method to show that the volume V of a cone with radius r and height h is given by $V=\frac{1}{3} \pi r^{2} h$.

Rotate the triangle about the x-axis and use the disk method.

$$
\pi \int_{0}^{h}\left(\frac{r}{h} x\right)^{2} d x=\left.\pi \frac{r^{2}}{h^{2}} \frac{x^{3}}{3}\right|_{0} ^{h}=\frac{1}{3} \pi r^{2} h
$$

3. (10%) A bucket that weighs 4 lb and a rope that weighs 0.2 lb per foot are used to draw water from a well that is 50 ft deep. The bucket is filled with 40 lb of water and is pulled up at a constant speed, but water leaks out of a hole in the bucket at a constant rate so that only half the water reaches the top. Find the work done in pulling the bucket to the top of the well.

Work for rope $=\int_{0}^{50} \frac{1}{5} x d x=250 \mathrm{ft}-\mathrm{lbs}$
Work for the 20 lbs of water that doesn't spill $=20 \cdot 50=1000 \mathrm{ft}-\mathrm{lbs}$
Work for bucket $=4 \cdot 50=200 \mathrm{ft}-\mathrm{lbs}$
Work for water that spills. Weight of water at distance x from the top $=\frac{2}{5} x$.
$\int_{0}^{50} \frac{2}{5} x d x=500 \mathrm{ft}-\mathrm{lbs}$
Total work $=1950 \mathrm{ft}-\mathrm{lbs}$
4. (10%) A conical tank of radius 4 ft and height 8 ft is full of water of density 62.5 lbs per ft^{3}. Set up an integral that represents the work in foot pounds needed to pump the water to a height 2 ft above the top of the tank.

8 ft

$$
62.5 \pi \| i n t_{0}^{8}(10-y)\left(\frac{y}{2}\right)^{2} d y
$$

5. (40\%) Evaluate the following integrals. Show your work.
(a) $\int(\ln x)^{2} d x$

Use Integration by Parts twice. Let $u=(\ln x)^{2}$ and $d v=d x$ to get
$x(\ln x)^{2}-2 \int \ln x d x$ Apply integration by parts to the simplified integral with $u=\ln x d v=d x$ to get the final answer of $x(\ln x)^{2}-2 x \ln x+2 x+C$
(b) $\int_{0}^{\pi / 4} \cos ^{2}(2 x) d x$
$=\int_{0}^{\pi / 4} \frac{1+\cos (4 x)}{2} d x=\left.\frac{x}{2}\right|_{0} ^{\pi / 4}+\left.\frac{\sin (4 x)}{8}\right|_{0} ^{\pi / 4}=\frac{\pi}{8}$
(c) $\int t \cos t d t$

Use integration by Parts with $u=t$ and $d v=\cos t$

$$
t \sin t+\cos t+C
$$

(d) $\int_{0}^{\pi / 4} \sec ^{3} \theta d \theta$

Let I be the given definite integral. Use Integration by Parts with $u=\sec \theta$ and $d v=\sec ^{2} \theta d \theta$. The new integral has a $\tan ^{2} \theta$ that can be replaced by $\sec ^{2} \theta-1$. The resulting equation can be solved for

$$
2 I=\left.\sec \theta \tan \theta\right|_{0} ^{\pi / 4}+\int_{0}^{\pi / 4} \sec \theta d \theta
$$

The final solution is $\frac{\sqrt{2}+\ln (\sqrt{2}+1)}{2}$
(e) $\int \tan ^{2} x \sec ^{4} x d x$

$$
\begin{gathered}
=\int \tan ^{2} x \sec ^{2} x \sec ^{2} x d x=\int \tan ^{2} x\left(\tan ^{2} x+1\right) \sec ^{2} x d x= \\
\int\left(\tan ^{4} x+\tan ^{2} x\right) \sec ^{2} x d x=\frac{\tan ^{5} x}{5}+\frac{\tan ^{3} x}{3}+C
\end{gathered}
$$

